

Serotonin and the Impact of Drugs

How is serotonin regulated?

- Serotonin is a chemical messenger that transmits signals between neurons
- Serotonin needs to bind to a receptor on the receiving neuron to deliver the signal
- There are 7 major families of serotonin receptors
- To remove serotonin, enzymes break down serotonin within the transmission space or serotonin is brought back into the neuron it was released from
- If the enzymes and reuptake pathways are not working correctly, the signals are dysregulated and the effects of serotonin may not be experienced as they should

What does serotonin do?

- Serotonin is mostly found in the intestines (~90%) to regulate bowel movements and digestion
- Serotonin in the brain helps regulate mood, sleep cycles, memory, pain perception and more!

Prescription Medications & Serotonin

Selective Serotonin Reuptake Inhibitors (SSRIs)

- These medications block the transporters of serotonin (SERT), preventing the serotonin in the transmission space from getting pulled back into the neurons
- This allows the body's own serotonin levels to stay higher for longer
- These medications also bind to the 5-HT2A receptors as antagonists, preventing the overstimulation of this main psychedelic receptor
- This class of medications includes fluoxetine, paroxetine, sertraline, escitalopram and citalopram

Selective Serotonin Reuptake Inhibitors (SNRIs)

- These medications work similarly to SSRIs but block the transporters of serotonin (SERT) and norepinephrine (NET) to prevent these molecules from getting pulled back into the neurons
- These medications do not bind to 5-HT2A receptors (the main psychedelic receptor)
- This class of medications includes venlafaxine and duloxetine

Prescription Medications & Serotonin

Tricyclic antidepressants (TCAs)

- These medications block the transporters of serotonin (SERT) and norepinephrine (NET) to prevent these molecules from getting pulled back into the neurons
- These medications also bind to the 5-HT2A receptors as antagonists, preventing the overstimulation of this main psychedelic receptor
- This class of medications includes amitriptyline, nortriptyline desipramine, and clomipramine

Monoamine Oxidase Inhibitors (MAOIs)

- Monoamine oxidases are enzymes that break down important neurotransmitters such as serotonin, norepinephrine, and dopamine
- The inhibitors block the ability for the enzyme to breakdown these molecules so their effects last longer
- The medications phenelzine, tranylcypromine, and isocarboxazid irreversibly bind to the MAOs leading to significantly less transmitter breakdown and increasing the risk of undesriable effects

Serotonin and Psychdelics

What happens when you take psychedelics?

- Psilocin/psilocybin and LSD bind to, and activate 5-HT2A receptors acting as an external source of serotonin
- MDMA binds to, and activates the 5-HT2B receptors acting as an external source of serotonin
- MDMA also binds to SERT (the serotonin reuptake transporter) making it work in reverse and causing release of more serotonin
- The overall outcome is an increase in the effects of serotonin which could be positive, negative or both

What is Serotonin Syndrome?

- This is a condition that occurs when there is too much serotonin in the body
- This condition can be experienced with regular doses of prescription medication and with as little as one dose
- Serotonin syndrome is a medical emergency requiring urgent medical attention

Serotonin Syndrome

Recognize the Signs and Symptoms

Confusion/disorientation

Rigidity/Muscle spasms

Irritability

Tremor

Anxiety

Overreponsive reflexes

High blood pressure

Seizures

Rapid heart rate

Coma/Death

Resources

- 1. Zhou Z, Zhen J, Karpowich NK, Law CJ, Reith ME, Wang DN. Antidepressant specificity of serotonin transporter suggested by three LeuT-SSRI structures. Nat Struct Mol Biol. 2009;16(6):652-657. doi:10.1038/nsmb.1602
- 2. Bamalan OA, Moore MJ, Al Khalili Y. Physiology, Serotonin. [Updated 2023 Jul 30]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK545168/
- 3. Berger M, Gray JA, Roth BL. The expanded biology of serotonin. Annu Rev Med. 2009;60:355-366. doi:10.1146/annurev.med.60.042307.110802
- 4. Chu A, Wadhwa R. Selective Serotonin Reuptake Inhibitors. [Updated 2023 May 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK554406/
- 5. Celada P, Puig M, Amargós-Bosch M, Adell A, Artigas F. The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. J Psychiatry Neurosci. 2004;29(4):252-265.
- 6. Sansone RA, Sansone LA. Serotonin norepinephrine reuptake inhibitors: a pharmacological comparison. Innov Clin Neurosci. 2014;11(3-4):37-42.
- 7. Moraczewski J, Awosika AO, Aedma KK. Tricyclic Antidepressants. [Updated 2023 Aug 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/sites/books/NBK55779
- 8. Sub Laban T, Saadabadi A. Monoamine Oxidase Inhibitors (MAOI) [Updated 2023 Jul 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK539848/
- 9. Banushi B, Polito V. A Comprehensive Review of the Current Status of the Cellular Neurobiology of Psychedelics. Biology (Basel). 2023;12(11):1380. Published 2023 Oct 28. doi:10.3390/biology12111380
- 10. Scotton WJ, Hill LJ, Williams AC, Barnes NM. Serotonin Syndrome: Pathophysiology, Clinical Features, Management, and Potential Future Directions. Int J Tryptophan Res. 2019;12:1178646919873925. Published 2019 Sep 9. doi:10.1177/1178646919873925